30 research outputs found

    Generic method for bijections between blossoming trees and planar maps

    Full text link
    This article presents a unified bijective scheme between planar maps and blossoming trees, where a blossoming tree is defined as a spanning tree of the map decorated with some dangling half-edges that enable to reconstruct its faces. Our method generalizes a previous construction of Bernardi by loosening its conditions of applications so as to include annular maps, that is maps embedded in the plane with a root face different from the outer face. The bijective construction presented here relies deeply on the theory of \alpha-orientations introduced by Felsner, and in particular on the existence of minimal and accessible orientations. Since most of the families of maps can be characterized by such orientations, our generic bijective method is proved to capture as special cases all previously known bijections involving blossoming trees: for example Eulerian maps, m-Eulerian maps, non separable maps and simple triangulations and quadrangulations of a k-gon. Moreover, it also permits to obtain new bijective constructions for bipolar orientations and d-angulations of girth d of a k-gon. As for applications, each specialization of the construction translates into enumerative by-products, either via a closed formula or via a recursive computational scheme. Besides, for every family of maps described in the paper, the construction can be implemented in linear time. It yields thus an effective way to encode and generate planar maps. In a recent work, Bernardi and Fusy introduced another unified bijective scheme, we adopt here a different strategy which allows us to capture different bijections. These two approaches should be seen as two complementary ways of unifying bijections between planar maps and decorated trees.Comment: 45 pages, comments welcom

    The Brownian continuum random tree as the unique solution to a fixed point equation

    Full text link
    In this note, we provide a new characterization of Aldous' Brownian continuum random tree as the unique fixed point of a certain natural operation on continuum trees (which gives rise to a recursive distributional equation). We also show that this fixed point is attractive.Comment: 15 pages, 3 figure

    On the algebraic numbers computable by some generalized Ehrenfest urns

    Get PDF
    This article deals with some stochastic population protocols, motivated by theoretical aspects of distributed computing. We modelize the problem by a large urn of black and white balls from which at every time unit a fixed number of balls are drawn and their colors are changed according to the number of black balls among them. When the time and the number of balls both tend to infinity the proportion of black balls converges to an algebraic number. We prove that, surprisingly enough, not every algebraic number can be "computed" this way

    Constellations and multicontinued fractions: application to Eulerian triangulations

    Get PDF
    We consider the problem of enumerating planar constellations with two points at a prescribed distance. Our approach relies on a combinatorial correspondence between this family of constellations and the simpler family of rooted constellations, which we may formulate algebraically in terms of multicontinued fractions and generalized Hankel determinants. As an application, we provide a combinatorial derivation of the generating function of Eulerian triangulations with two points at a prescribed distance.Comment: 12 pages, 4 figure

    Some families of increasing planar maps

    Full text link
    Stack-triangulations appear as natural objects when one wants to define some increasing families of triangulations by successive additions of faces. We investigate the asymptotic behavior of rooted stack-triangulations with 2n2n faces under two different distributions. We show that the uniform distribution on this set of maps converges, for a topology of local convergence, to a distribution on the set of infinite maps. In the other hand, we show that rescaled by n1/2n^{1/2}, they converge for the Gromov-Hausdorff topology on metric spaces to the continuum random tree introduced by Aldous. Under a distribution induced by a natural random construction, the distance between random points rescaled by (6/11)logn(6/11)\log n converge to 1 in probability. We obtain similar asymptotic results for a family of increasing quadrangulations

    A note on the enumeration of directed animals via gas considerations

    Get PDF
    In the literature, most of the results about the enumeration of directed animals on lattices via gas considerations are obtained by a formal passage to the limit of enumeration of directed animals on cyclical versions of the lattice. Here we provide a new point of view on this phenomenon. Using the gas construction given in [Electron. J. Combin. (2007) 14 R71], we describe the gas process on the cyclical versions of the lattices as a cyclical Markov chain (roughly speaking, Markov chains conditioned to come back to their starting point). Then we introduce a notion of convergence of graphs, such that if (Gn)G(G_n)\to G then the gas process built on GnG_n converges in distribution to the gas process on GG. That gives a general tool to show that gas processes related to animals enumeration are often Markovian on lines extracted from lattices. We provide examples and computations of new generating functions for directed animals with various sources on the triangular lattice, on the Tn\mathcal {T}_n lattices introduced in [Ann. Comb. 4 (2000) 269--284] and on a generalization of the \mathcaligr {L}_n lattices introduced in [J. Phys. A 29 (1996) 3357--3365].Comment: Published in at http://dx.doi.org/10.1214/08-AAP580 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Random cubic planar graphs converge to the Brownian sphere

    Full text link
    In this paper, the scaling limit of random connected cubic planar graphs (respectively multigraphs) is shown to be the Brownian sphere. The proof consists in essentially two main steps. First, thanks to the known decomposition of cubic planar graphs into their 3-connected components, the metric structure of a random cubic planar graph is shown to be well approximated by its unique 3-connected component of linear size, with modified distances. Then, Whitney's theorem ensures that a 3-connected cubic planar graph is the dual of a simple triangulation, for which it is known that the scaling limit is the Brownian sphere. Curien and Le Gall have recently developed a framework to study the modification of distances in general triangulations and in their dual. By extending this framework to simple triangulations, it is shown that 3-connected cubic planar graphs with modified distances converge jointly with their dual triangulation to the Brownian sphere.Comment: 55 page
    corecore